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A Chaotic Map with a Flat Segment Can 
Produce a Noise-Induced Order 
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Matsumoto and Tsuda studied the effects of noise on chaos in a one-dimen- 
sional Belousov-Zhabotinsky (BZ) map and found noise-induced order, that is, 
an external noise destroys a chaotic behavior and produces some kind of order 
(periodicities). This phenomenon is very interesting in understanding the 
relation between chaos and natural phenomena. The present paper proposes a 
unimodal piecewise linear map which has a flat segment. It is shown numerically 
that the noise-induced order can be observed in this simple map in the same 
way as the BZ map. These numerical results clarify the mechanism of noise- 
induced order. 

KEY WORDS:  One-dimensional mapping; noise-destabilized chaos; flat 
segment. 

1. I N T R O D U C T I O N  

A one-d imens iona l  discrete t ime dynamica l  system (a one-d imens iona l  
m a p p i n g )  has been extensively used to descr ibe  the t empora l  change of  a 
quan t i ty  in na tu ra l  phenomena .  ~1~ Such a dynamica l  system, even though  
very simple,  can exhibi t  rich dynamica l  s tructures,  inc luding chaos.  Over  
the pas t  15 years, immense  efforts have been invested in the s tudy of 
chaot ic  dynamica l  systems. One  would  like to unde r s t and  the role of chaos  
in na tu ra l  phenomena .  I t  is i m p o r t a n t  to s tudy the effects of an external  
noise on a chaot ic  dynamica l  system in unde r s t and ing  the re la t ion  between 
chaos  and  na tu ra l  p h e n o m e n a  since all real systems are subjected to 
var ious  noise. 

In recent  years,  m a n y  chaot ic  dynamica l  systems have been 
inves t iga ted  numer ica l ly  a n d / o r  ana ly t ica l ly  in the presence of noise. (2"3'5) 
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In these studies, one can distinguish two types of noise effects. In the first, 
an external noise induces the transition from the "ordered" (periodic) state 
to the chaotic state. Crutchfield e t  al. ~4~ studied the effects of fluctuations on 
a dynamical system which undergoes cascade bifurcations and showed that 
the presence of noise leads to a bifurcation gap. It is also shown that 
fluctuations increase the degree of randomness of chaos. Mayer-Kress and 
Haken t6~ studied the dynamics of the logistic map in the presence of noise 
and observed the noise-induced transition from the stable periodic orbits to 
chaos. 

The second type of noise effect is to induce the opposite transition: 
The chaotic state can be driven into the "ordered" state by an external 
noise. Mayer-Kress and Haken ~7'8~ studied the smooth perturbation of the 
logistic map which has a positive Schwarzian derivative and observed that 
the Lyapunov exponent changes its value from positive to negative by an 
external noise. Matsumoto and Tsuda (9~ studied the Belousov-Zhabotinsky 
(BZ) map and observed an interesting phenomenon called a noise-induced 
order. In fact, an external noise killed the chaotic behavior and produced 
some kind of order (periodicities). They further studied the BZ map and 
showed various interesting phenomena on the noise-induced order. Proper- 
ties of the noise-induced order they found are summarized as follows: 

i. A sharp peak appears in the power spectrum by adding noise. ~9~ 

ii. The Lyapunov exponent changes its value from positive to 
negative by adding noise. ~ 

iii. The entropy decreases as the noise level increases. ~176 

iv. The mutual information decreases exponentially in the presence of 
noise, while it decreases in an oscillatory way in the absence of noise. ~1z13) 

Matsumoto and Tsuda (9-1-~) investigated the dynamics of the BZ map 
in detail, taking note of the steep part of the map, and concluded that the 
noise-induced order is mainly caused by  the steepness of the BZ map. 

In this paper, I propose a unimodal pjecewise linear map (the 
TWFS map) which does not have a steep part but has a flat part. Using 
this map, it is shown numerically that the noise-induced order with proper- 
ties i-iv is observed as in the case of BZmap.  I t  is also shown that a 
variance of the noise necessary to extinguish the chaos becomes smaller as 
the slope of the flat part decreases. Thus I consider the mecbanism of the 
noise-induced order. I show that a f la t  part plays an important role in 
producing the noise-induced order. 

The organization of the paper is as follows. Section 2 illustrate s briefly 
the dynamics of the BZ map. Section 3 specifies the TrWFS map to be 
considered. Section 4 calculates numerically the probability density, the 
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power spectrum, the Lyapunov exponent, the entropy, and the mutual 
information for the TWFS map. The paper concludes with some brief 
comments in Section 5. 

2. T H E  BZ M A P  

Consider a one-dimensional discrete time dynamical system (a ID 
mapping) of form 

Xn+l =f (xn) ,  n = 0 ,  1,... (1) 

w h e r e f i s  a nonlinear function on the unit interval [0, 1]. Call x,, the nth 
state of the system (1) and call x o the initial state particularly. A set of 
successive points {xn}(n = 0, 1, 2,...) is called the orbit of the map f ( x )  or 
the orbit of the system (1). Though an orbit of the system depends on its 
initial state, the physically interesting behavior of a system is what is 
observed after initial transient behaviors die away. The set of states which 
an orbit eventually visits is called the system's attractor. 

Let us investigate the effects of an external noise on the dynamics of 
the system. Consider the following system: 

2n+, = f (2 , , )  + ~n, n = 0 ,  1,... (2) 

where in are the pseudo-random numbers generated by a computer. The 
random numbers are equally distributed in the interval [ - 6 / 2 ,  6/2]. ~, has 
a zero mean and a standard deviation 6/2 x/-J. ~n is interpreted as an exter- 
nal noise to the system (1) and 6 controls the amplitude of noise or the 
noise level. Note that the noisy system (2) includes the noiseless system (1) 
as the special case (6 = 0) of the system (2). 

Matsumoto and Ysuda investigated exclusively the case where f(x) is 
the B Z m a p  (Fig. 1): 

a +  x - ~  e x p ( - x )  + b, 0~<x<0.3  

c 10xexp ~ +b ,  0.3~<x~<l 

a = 0.50607357, c = 0.121205692 

The map has both a flat part and a steep part (a neighborhood of x = 1/8). 
They investigated the effects of noise on the BZ map; they studied the 
system (2) and showed various interesting numerical phenomena called 
noise-induced order, characteristic features of which were summarized in 
i iv of Section 1. 
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Fig. 1. Graph of the BZ map. 

The remainder of this section investigates briefly the BZ map in order 
to get a heuristic description of the noise-induced order. The bifurcation 
diagram of Fig. 2 presents the change in the attractor of system (1) as a 
function of the bifurcation parameter b in the regime [0,0.025 ]. At a fixed 
bifurcation parameter, a periodic orbit consists of a set of separate points, 
while a chaotic attractor forms dense bands within the unit interval. In 
Fig. 2, the range of the bifurcation parameter b at which the orbit of the 
system is periodic is still wide and the parameter region at which the orbit 
is chaotic is narrow. Matsumoto and Tsuda chose a bifurcation parameter 
b = 0.01213... where the behavior of the BZ map is chaotic and showed that 
the chaotic behavior is driven into the ordered state by adding noise. 

As can be seen in comparing Eqs. (2) and (3), an addition of an exter- 
nal noise to the system is equivalent to causing the bifurcation parameter 
b to fluctuate around a mean value. At a fixed parameter b where the 
behavior of the system is chaotic, the system is influenced by adjacent 
periodic attractors by adding an external noise to the system. Roughly 
speaking, the effect of noise is to average the structure of deterministic 
attractors over some range of nearby parameters. It is expected that, if a 
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Fig. 2. Bifurcation diagram of the BZmap. Following a transient of 500 iterates, 2000 
iterates of Eq. (I), namely {x,} ( i= 500,..., 2500) were recorded for each of 500 equally spaced 
b values on the interval [0,0.025]. 

chaotic parameter region is relatively narrower than nearby periodic 
parameter regions, the chaotic behavior is strongly influenced by nearby 
periodic orbits in the presence of noise and hence the noise-induced order 
appears. This suggests that various maps which have a similar bifurcation 
structure to the BZ map can produce the phenomenon of noise-induced 
order. I show this in the following sections. 

3. THE T W F S  M A P  

Let us consider the following map: 
r 

2x+b+e, 

f(x)= 2 ( a - x ) + b + e ,  

~ ( x -  a)  
t-b+e, 

a - I  

a 
0 ~ x r  

a 
-~<x<~a (4) 

a < x ~ l  
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Fig. 3. Graph of the TWFS map. 

Figure 3 illustrates the features of the map. This map is still simple because 
it consists of only a flat segment and a tent map, which is well known to 
be the simplest map exhibiting chaotic behavior. I call it the TWFS (tent 
with a flat segment) map for brevity. A parameter e whose value is very 
small is used to express the flatness of the map. The TWFS map is con- 
sidered to be the piecewise linear approximation of the BZ map. However, 
it should be noted explicitly that the TWFS map does not have a steep 
part, though the BZ map does. 

Figure 4 shows the bifurcation diagram presents the change in the 
attractor of system (1) as a function of a bifurcation parameter b for fixed 
parameters a and ~. At a fixed bifurcation parameter value in the bifurca- 
tion diagram, a periodic orbit consists of a countable set of points, while 
a chaotic attractor fills out dense bands within the unit interval. In the 
interval [0.06, 0.1] of the bifurcation parameter b, a chaotic parameter 
region is narrower than a periodic parameter region, while a chaotic 
parameter region is considerably wider in the interval [0, 0.02]. Comparing 
Fig, 4a with Fig. 4b, it is seen that the region of the parameter b at which 
the behavior of the system (1) is chaotic becomes narrower as e decreases. 
Figures 4c and 4d are for the cases of ~ = 0. Figure 4d is the magnification 
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Fig. 4. Bifurcat ion d i a g r a m s  of the T W F S  map.  Fo l lowing  a t rans ient  of 500 iterates,  2000 
i terates  of Eq. (1), namely  {x ,}  ( i =  500,,.., 2500), were recorded for each of 500 equal ly  
spaced b values  on the in terval  (a~c) [0, 0.1 ] and  on the interval  (d) [0.06, 0.07].  The  value  
of a is 0.8 and  the values  of e are: (a)  0.00001, (b) 0.000001, (c) 0, (d) 0. Pa r t  d is the 
magni f ica t ion  of the in terval  [0.06, 0.073 of par t  c. In the case of e = 0, for a lmos t  all  b values,  
orbi ts  are per iodic  and  a chao t ic  behav io r  does  no t  appear ,  t hough  the b i furcat ion has  a very 
compl i ca t ed  nes t ing structure.  
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of the interval [0.06, 0.07] of the parameter b in Fig. 4c. In the case of 
e = 0 ,  the bifurcation diagram has a complicated nesting structure and 
various periodic orbits appear as the value of b changes. Note that a 
chaotic behavior does not appear at almost all b values in the case of e = 0, 
though the bifurcation diagram has a very complicated structure. 

As is seen from Figs. 4a-4d, the region of the bifurcation parameter b 
producing a chaotic behavior becomes narrower and the bifurcation struc- 
ture approaches the case of e = 0 as e decreases. The global feature of the 
bifurcation diagram of the TWFS map is different from that of the BZ map. 
However, for a sufficiently small e, the bifurcation structure of the TWFS 
map has a similar structure to the BZ map in the following sense: the 
TWFS map has a bifurcation structure in which the periodic parameter 
region is wide and the chaotic parameter region is very narrow. Therefore, 
it is expected that the noise-induced order can appear in the case of the 
TWFS map as in the case of the BZ map. We shall see this in the next 
section. 

4. N O I S E - I N D U C E D  O R D E R  IN THE  T W F S  M A P  

In this section I investigate the effects of noise on the system (1) 
numerically, using the TWFS map, and show that the noise-induced order 
with properties i-iv found by Matsumoto and Tsuda can appear. I set 
a- -0 .8  throughout this section. 

4.1. Probabi l i ty  Dens i ty  

In the case of ~=0.00000l,  I choose the bifurcation parameter 
b = 0.08406, so that the orbit of the system (1) become chaotic. In this case, 
the attractor of the system (1) forms dense bands within the unit interval 
rather than discrete points (see Fig. 4b). Therefore, one needs to consider 
the action of the system (1) on a probability distribution. Let us calculate 
the probability density (the invariant density) of the system (1) numeri- 
cally. 

Divide the unit interval into 500 equal segments. Let P(i) denote the 
probability of finding the state x n in the ith segment. The probability 
density P(i) ( i=  1,..., 500) is approximated by a histogram obtained from 
105 iterates of Eq. (1). The probability density P(i) ( i=  1 ..... 500) gives 
a frequency distribution of a trajectory starting from a certain initial 
state in the unit interval. If an external noise is added to the system (1), the 
probability density P(i) is calculated using the iteration of Eq. (2) in the 
same manner. 

The probability density P(i) is shown in Fig. 5. Figure 5a shows the 
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Fig. 5. P robab i l i t y  densi t ies  P(i). The densi t ies  wcre c o m p u t e d  by b inn ing  10 ~ i terates 
of Eq. (1) or (2) in to  500 equa l ly  spaced bins fol lowing a t rans ien t  of 500 iterates. The 
pa rame te r  values  are a = 0.8. b = 0.08406. (a)  The  chaot ic  case (e = 0.000001, 6 = 0 ) .  (b) The 
chaot ic  case wi th  added  noise (~ = 0.000001, ~5 = 0.00004). (c) The per iodic  case wi th  added  
noise (s = 0, 5 = 0.00004). 
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probability density in the noiseless case (3--0) ,  while Fig. 5b shows the 
noisy case (6 = 0.00004). In Fig. 5a, there are several sharp spikes in the 
probability density and hence the chaos is considered to have some kind of 
periodicity. Comparing Fig. 5a with Fig. 5b, it is seen that the number of 
sharp spikes decreases and the amplitudes of the spikes become higher by 
adding noise. The chaotic orbit visits specific segments more frequently in 
the presence of noise than in the absence of noise. The chaotic orbit in the 
presence of noise has a stronger periodicity than the chaotic orbit without 
noise. This suggests that an external noise decreases the degree of random- 
ness of the chaotic orbit in the dynamics. In this sense, some kind of order 
induced by an external noise appears. 

Figure 5c is also the noisy case for e = 0. As stated in Section 3, the 
orbit of the noiseless system (1) is not chaotic, but periodic in the case of 
e = 0. In this case, the effect of noise is to average the periodic orbits at 
adjacent parameter values. Comparing Fig. 5b with Fig. 5c, it is seen that 
the both figures are very similar. This means that the attractor of the noisy 
chaotic system can be approximated by an appropriately weighted average 
of periodic orbits of the noiseless system (1) over some range of nearby 
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Fig. 6. Power spectral densities of the orbits [2,,} of the TWFS map for a = 0.8, b = 0.08406, 
e =0.000001, and various values of 8: (a) 0, (b) 0.00001, (c) 0.00004, (d) 0.01. The spectral 
densities were computed using the average of F F T  of 50 sequences with 1024 points. For a 
critical noise level 6 = 0.00004 (panel c), the power spectral density has a strong periodicity. 
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parameters. The noise-induced order is considered to have a close connec- 
tion with the bifurcation structure of the periodic orbits of the system (1); 
if the chaotic parameter region is much narrower than the periodic 
parameter region, the chaos is strongly influenced by adjacent periodic 
orbits and hence the noise-induced order can appear. 

4.2. Power  Spectral  Density 

I calculated numerically the power spectral densities of the orbit {2n} 
using the fast Fourier transform. The results are shown in Fig. 6. Figure 6a 
shows the power spectral density in the case without noise. The noise level 
6 is gradually increased from Fig. 6b to Fig. 6d. In Fig. 6a, there are several 
peaks in the power spectral densities. It is also shown that the chaotic orbit 
has some kind of periodicity, as shown in Fig. 5a. If the noise level g is 
increased, the amplitudes of sharp peaks become higher. For the critical 
noise level 6 = 0.00004, the amplitudes of the sharp peaks take maximum 
values. If the noise level 6 further increases, the sharp peaks disappear. 

In Fig. 6, it is shown that some kind of order (periodicity) appears for 
a critical noise level. This result is consistent with the previous calculation 
of the probability density in Section 4.1. 

4.3. Lyapunov Exponent 

In this subsection, I calculate the other indicator for a chaotic 
behavior of the system and study how the chaotic characteristic of the 
system changes by adding noise. 

The Lyapunov exponent 2 is a quantity which measures the average 
divergence of orbits starting from nearby initial states. The Lyapunov 
exponent )~ of the system (1) is defined by 

2 lim l n ~  1 = - In (Xk) (5) 
n ~  H k = 0  

When an external noise is added to the system (1), the Lyapunov exponent 
2 of the system (2) can be defined in close analogy to the formula (5) if we 
replace the sequence {xn} by {xn}. Here 2 < 0  means that the orbit {x~} 
is stable and periodic, while 2 > 0  means that the orbit {xn} is locally 
unstable and chaotic. 

Figure 7 illustrates how the Lyapunov exponent ~. changes its value as 
the bifurcation parameter b changes. Both Figs. 7a and 7b are noiseless 
cases (6=0); for Fig. 7a, e=0.00001; for Fig. 7b, e=0.000001. From 
Figs. 7a and 7b, it is seen that the chaotic parameter region (the 2 > 0  
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Fig. 7. L y a p u n o v  exponen t  2 vs. the bi furcat ion pa rame te r  b. Her s  2 is ca lcula ted  to within 

1% using Eq. (5) at  each b value. The pa rame te r  values  are a = 0.8 and (a) e = 0.0000l,  3 = 0, 
(b) e = 0.000001, 6 = 0, (c) e = 0.00001, ~ = 0.005, (d)  e = 0.000001, 6 = 0.005. Par t s  c and  d are 

the noisy  cases of the noiseless  cases in par ts  a and  b, respectively. 
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region) becomes narrower as e decreases. This is also shown in Figs. 4a and 
4b, where Figs. 7a and 7b correspond to Figs. 4a and 4b, respectively. 

Figures 7c and 7d are the noisy cases (5 = 0.005) corresponding to the 
noiseless cases of Figs. 7a and 7b, respectively. Comparing Fig. 7b with 
Fig. 7d, it is seen that 2 changes its value from positive to negative for 
almost values of b in the interval [0.06, 0.1] by adding noise. In the sense 
of Lyapunov exponent, the noise-induced transition from chaos to order 
occurs. If the slope of the flat segment is large, the situation is different. 
Comparing Fig. 7a with Fig. 7c, one sees that the value of ). does not 
change from positive to negative though 2 decreases its value in the interval 
[0.06, 0.1] of b. If the noise level 5 is sufficiently high, ). also changes its 
value from positive to negative in this case. This means that the noise level 
5 necessary to extinguish the chaos becomes smaller as e decreases. 

Figure 8 illustrates how the Lyapunov exponent changes its value as 
the noise level 5 increases for a fixed bifurcation parameter b. As the noise 
level increases, the Lyapunov exponent 2 decreases. 2 changes its value 
from positive to negative at a certain noise level. This means that the 
chaotic orbit is influenced more strongly by periodic orbits at nearby 
bifurcation parameters as the noise level 5 increases. 

For  a large noise level 5, for example 5 = 0.01, the Lyapunov exponent 
takes a negative value, but the power spectral density does not have a 

Fig. 8. 

~- ,e~, ~ V ~ , ~ ,  . ,l ~ 

e i 

-6  loglO ~ -1 ~ 

Lyapunov exponent .t vs. the noise level 5. The parameter values are a=0.8, 
b = 0.08406, e = 0.000001. Here 2 decreases as the noise level 5 increases. 
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periodicity (see Fig. 6d). This means that the Lyapunov exponent is not 
necessarily an appropriate indicator for a chaotic behavior in the presence 
of large noise, as often pointed out. 

In this subsection, using the Lyapunov exponent, we have seen that 
the chaos is destroyed by an external noise for sufficiently small e and that 
the noise level c~ necessary to extinguish the chaos becomes smaller as e 
decreases. This suggests that the flatness of the TWFS map plays an impor- 
tant role in producing the noise-induced order. 

4.4. Entropy 

Section 4.1 has shown qualitatively that an external noise decreases 
the degree of randomness of chaotic orbits using probability distribution. 
In this subsection, we shall see this quantitatively using entropy. 

Divide the unit interval [-0, 1] into 500 equal segments. For  this 
partition, define the entropy H of the system (1) or (2) as follows: 

H = - ~  P(i)log P(i) (6) 
i 

where P(i) is the probability distribution of an orbit at a given parameter 
value, such as shown in Fig. 5. Figure 9 illustrates how the value of H 
changes as the noise level 6 increases. The entropy H takes a minimum 
value between 6 = 1 x 10 -5 and 6 = 1 x 10 4. The result shows that some 
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Fig. 9. E n t r o p y  H vs. the  noise  level ~. The  values  of  the p a r a m e t e r s  a re  the  s a m e  as Fig.  8. 

H takes  a m i n i m u m  value  be tween  the  noise  level 6 = 1 x 10 -5  a n d  ~ = 1 x l0  -4,  
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kind of order appears at a critical noise level. This result is same as the 
result obtained by Matsumoto and Tsuda (9) using the BZ map. 

Matsumoto (1~ further studied the dynamics of the BZ map using a 
symbolic dynamical representation in order to clarify the mechanism of the 
noise-induced order. He regarded the system (2) as the nth-order Markov 
information source and calculated the entropy of the Markov source. It is 
shown that this entropy also decreases at a critical noise level. I shall 
calculate this entropy for the TWFS map and show that the same result 
can be obtained for the TWFS map. 

Let us divide the unit interval [0, 1 ] into two segments, [-0, a/2] and 
(a/2, 1], labeled with symbols L and R, respectively. Thus, the time evolu- 
tion {2o, ~ ,  -~2 .... } of the system (2) is then translated into a sequence of 
symbols labeling the partition elements visited by an orbit, 

s--  {So, s~, s2 .... }, s i=  R, L (7) 

We consider the symbol sequence s =  {So, sl,  s2 .... } as the product of an 
nth-order Markov source. Namely, we approximate the symbol sequence 
So, Sl, s2 .... by an nth-order Markov process. Let us define the entropy H ,  
of the nth-order Markov source: 

Hn = - E  P(81 ,'", Sn + 1 ) log p(s~ + 1/Sl ,..., Sn) (8) 

where the summation is taken over all possible sequences s n + l =  
(sl ..... s,,+l), s , = R ,  L. Here p(sl  ..... sn+l) is the probability of the 
occurrence of a sequence (sl ..... sn+l) and p(sn+ffs~,..., sn) is the condi- 
tional probability of finding a symbol sn+~ after observing a sequence 
(s~ ..... sn) in the symbolic dynamics. Figure 10 illustrates how Hn changes 
as a function of the noise level 6. It is seen that the function H,, of 6 
converges as n increases. The symbolic dynamics of the system (2) is well 
approximated by the 10th-order Markov process and the entropy of 
Markov information source decreases at a suitable noise level. 

Matsumoto (1~ claimed that noise can suppress narrow states from 
symbolic dynamics if the widths of symbolic dynamical state (Markov par- 
tition) are nonuniform and hence the decrease of the entropy Hn occurs. 
The nonuniformity of the widths of symbolic dynamical states results from 
the steepness of a map. However, the TWFS map does not have a steep 
part, though it has a flat part. This, opposed to Matsumoto, (~~ also 
suggests that a flat part plays an important role in the phenomenon of 
decrease of the entropy by adding noise. 



960 Doi 

-8 
log ~5 

n 

Fig. 10. Entropy Hn vs. the noise level 6 for n = 0, 1,..., 10. Here Hn is calculated numerically 
using the formula (8), where p(sl ..... sn+l) and p(sn+~/sl ..... s~) are approximated using 105 
iterates of Eq. (2). The values of the parameters are the same as in Fig. 8. The entropy H, also 
takes a minimum value at a certain noise level 6 as in Fig. 9. 

4.5, M u t u a l  I n f o r m a t i o n  

In order to clarify the real mechanism of the noise induced-order, 
Matsumoto and Tsuda (12'13) discussed the informational structure of a one- 
dimensional map. Namely, they calculated the mutual information of the 
BZ map and showed the phenomenon with the property iv stated in 
Section 1. Thus, they discussed the mechanism of the noise-induced order 
and insisted that the existence of the phenomenon of noise-induced order 
can be checked from the feature of the graph of the mutual information. 

In this subsection, I calculate the mutual information for the TWFS 
map and present the same phenomenon as property iv in the BZ map. 

Divide the unit interval [0, 1] into 500 equal segments. For this 
partition, define the mutual information I(n) as follows: 

I(n) = - ~  P(i) log P(i) + ~ P(i) Pn(j/i) log Pn(j/i) 
i i , j  

(9) 

where P(i) is defined such as shown in (6) and Pn(j/i) is the conditional 
probability of a point starting the ith segment falling in the j th  segment 
after n iterations. Figure 11 shows the mutual information I(n). It is seen 
that the mutual information I(n) of the noiseless system (1) decreases in an 
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Fig. 11. Mutual information I(n) (n=0,..., 50) for a=0.8,  b =0.08406, e=0.000001, and for 
different values of &: (a) 0, (b) 0.001. (a) The noiseless case. The mutual information I(n) 
decreases in an oscillatory way. (b) The noisy case. I(n) decreases exponentially. Here I(n) is 
calculated using the formula (9). In this calculation, one starts with 1000 points uniformly dis- 
tributed over each segment of the partition and approximates Pn(j/i). 
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oscillatory way and that I(n) decreases exponentially in the presence of 
noise. This result is in full agreement with the result ~ obtained for the 
BZ map. 

5. D I S C U S S I O N  

This paper has presented the very simple example of a one-dimen- 
sional map (the TWFS map) which produces the phenomena of noise- 
induced order found by Matsumoto and Tsuda 19-12) using the BZ map. I 
calculated the probability density, the power spectrum, the Lyapunov 
exponent, the entropy, and the mutual information numerically for the 
TWFS map. In these numerical calculations, all the properties i-iv of the 
noise-induced order have been observed for the TWFS map. It is also 
shown that the noise level necessary to extinguish the chaos becomes 
smaller as the slope of the flat segment decreases. 

The BZ map has both a wide, flat part and a steep part (see Fig. 1). 
Matsumoto and Tsuda insist that the noise-induced order is mainly caused 
by the steepness of the map. The TWFS map does not necessarily have a 
steep part, though it has a flat part. This, opposed to Matsumoto and 
Tsuda, suggests that the fiat part in the map may play an important role 
in producing the noise-induced order. 

Since the purpose of this paper is to present a simple example 
producing the noise-induced order, I calculated various statistical 
quantities only numerically and have not investigated the statistical 
quantities in detail. This detailed investigation is now in progress. 
However, the numerical calculations sufficiently emphasize a role of a flat 
part in the noise-induced order. 

Section 3 showed that the TWFS map has a very complicated bifurca- 
tion structure only numerically. It is possible to determine the bifurcation 
structure of periodic orbits analytically, though it is difficult to investigate 
the statistical property of chaotic orbits at every bifurcation parameter b. 
I will show this analysis in the another paper. (14) 

As seen in Section 4.1, the probability density of the chaotic case (the 
case of e ~ 0, Fig. 5b) with added noise is very similar to that of the periodic 
case (the case of ~ = 0, Fig. 5c) with added noise. I introduce the following 
intuitive discussion in order to understand why this phenomenon occurs. 
As described in Section 2, an addition of an external noise is equivalent to 
causing the bifurcation parameter b to fluctuate around a mean value. For 
sufficiently small e, a chaotic parameter region is fairly narrower than 
nearby periodic parameter regions. Thus, the chaotic behavior is smeared 
and is influenced considerably by nearby periodic orbits in the presence 
of noise. I shall make this a little more precise. Let P~,b(x) and P~.b(x) 
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[I denoted both by P(i) in Section4.1] be the probability density of the 
system in the absence of noise and that in the presence of noise, respec- 
tively. Approximate P~.b(x) by the average of the probability densities 
corresponding to periodic orbits: 

P ~ b ( x ) ~ -  Po, b+~,(x) (10) 
�9 / 7 i =  1 

where ~i is a random noise such as shown in (2). Since Po, b+r is the 
probability density of the system without noise in the case of e = 0, the 
system is periodic and Po.b+e,(x) consists of several spikes. If the formula 
(10) gives a good approximation for a sufficiently large n, then the chaotic 
system in the presence of noise is considered to be affected considerably by 
the periodic behavior of the system at nearby bifurcation parameters. 
P0,b+ r denotes the stationary behavior of the system for a fixed bifurca- 
tion parameter b + ~i. Hence, it is necessary to take the transient behavior 
of the system into consideration for a more precise approximation of 
P~.b(x). I am investigating along these lines. 

In this paper, I investigated exclusively the TWFS map and showed 
the phenomenon of noise-induced order. However, noise-induced order can 
be observed in any one-dimensional m a p f ( x )  which has a flat segment, for 
example f ( x ) =  ax exp( -bx2) .  A flat segment represents the stability of a 
system [a map f ( x ) ] .  A chaotic map with a flat segment is considered to 
be very stable and periodic as a whole, though the map may produce a 
chaotic behavior at a suitable bifurcation parameter. It is expected that 
one-dimensional maps with a flat segment appear in various studies of 
natural phenomena. 
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